Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Earth Space Chem ; 7(10): 1956-1970, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37876663

RESUMO

Photoionization detectors (PIDs) are lightweight and respond in real time to the concentrations of volatile organic compounds (VOCs), making them suitable for environmental measurements on many platforms. However, the nonselective sensing mechanism of PIDs challenges data interpretation, particularly when exposed to the complex VOC mixtures prevalent in the Earth's atmosphere. Herein, two approaches to this challenge are investigated. In the first, quantum-chemistry calculations are used to estimate photoionization cross sections and ionization potentials of individual species. In the second, machine learning models are trained on these calculated values, as well as empirical PID response factors, and then used for prediction. For both approaches, the resulting information for individual species is used to model the overall PID response to a complex VOC mixture. In complement, laboratory experiments in the Harvard Environmental Chamber are carried out to measure the PID response to the complex molecular mixture produced by α-pinene oxidation under various conditions. The observations show that the measured PID response is 15% to 30% smaller than the PID response modeled by quantum-chemistry calculations of the photoionization cross section for the photo-oxidation experiments and 15% to 20% for the ozonolysis experiments. By comparison, the measured PID response is captured within a 95% confidence interval by the use of machine learning to model the PID response based on the empirical response factor in all experiments. Taken together, the results of this study demonstrate the application of machine learning to augment the performance of a nonselective chemical sensor. The approach can be generalized to other reactive species, oxidants, and reaction mechanisms, thus enhancing the utility and interpretability of PID measurements for studying atmospheric VOCs.

2.
Environ Sci Technol ; 56(9): 5421-5429, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35413185

RESUMO

The chemical pathways for the production of secondary organic aerosols (SOA) are influenced by the concentration of nitrogen oxides (NOx), including the production of organonitrates (ON). Herein, a series of experiments conducted in an environmental chamber investigated the production and partitioning of total organonitrates from α-pinene photo-oxidation from <1 to 24 ppb NOx. Gas-phase and particle-phase organonitrates (gON and pON, respectively) were measured by laser-induced fluorescence (LIF). The composition of the particle phase and the particle mass concentration were simultaneously characterized by online aerosol mass spectrometry. The LIF and MS measurements of pON concentrations had a Pearson correlation coefficient of 0.91 from 0.3 to 1.1 µg m-3. For 1-6 ppb NOx, the yield of SOA particle mass concentration increased from 0.02 to 0.044 with NOx concentration. For >6 ppb NOx, the yield steadily dropped, reaching 0.034 at 24 ppb NOx. By comparison, the yield of pON steadily increased from 0.002 to 0.022 across the range of investigated NOx concentrations. The yield of gON likewise increased from 0.005 to 0.148. The gas-to-particle partitioning ratio (pON/(pON + gON)) depended strongly on the NOx concentration, changing from 0.27 to 0.13 as the NOx increased from <1 to 24 ppb. In the atmosphere, there is typically a cross-over point between clean and polluted conditions that strongly affects SOA production, and the results herein quantitatively identify 6 ppb NOx as that point for α-pinene photo-oxidation under these study conditions, including the production and partitioning of organonitrates. The trends in SOA yield and partitioning ratio as a function of NOx occur because of the changes in pON volatility.


Assuntos
Poluentes Atmosféricos , Aerossóis/química , Poluentes Atmosféricos/análise , Atmosfera , Monoterpenos Bicíclicos , Monoterpenos/química
3.
Environ Sci Technol ; 53(22): 13209-13218, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31593442

RESUMO

The uptake of gas-phase dicarboxylic acids to organic particulate matter (PM) was investigated to probe the role of the PM physical state in exchange processes between gas-phase semivolatile organic molecules and organic PM. A homologous series of probe molecules, specifically isotopically labeled 13C-dicarboxylic acids, was used in conjunction with aerosol mass spectrometry to obtain a quantitative characterization of the uptake to organic PM for different relative humidities (RHs). The PM was produced by the dark ozonolysis of unlabeled α-pinene. The uptake of 13C-labeled oxalic, malonic, and α-ketoglutaric acids increased stepwise by 5 to 15 times with increases in RH from 15 to 80%. The enhanced uptake with increasing RH was explained primarily by the higher molecular diffusivity in the particle phase, as associated with changes in the physical state of the organic PM from a nonliquid state to a progressively less-viscous liquid state. At high RH, the partitioning of the probe molecules to the particle phase was more associated with physicochemical interactions with the organic PM than that with the co-absorbed liquid water. Uptake of the probe molecules also increased with a decrease in volatility along the homologous series. This study quantitatively shows the key roles of the particle physical state in governing the interactions of organic PM with semivolatile organic molecules.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis , Umidade , Viscosidade , Volatilização
4.
Proc Natl Acad Sci U S A ; 116(39): 19318-19323, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31501347

RESUMO

The emissions, deposition, and chemistry of volatile organic compounds (VOCs) are thought to be influenced by underlying landscape heterogeneity at intermediate horizontal scales of several hundred meters across different forest subtypes within a tropical forest. Quantitative observations and scientific understanding at these scales, however, remain lacking, in large part due to a historical absence of canopy access and suitable observational approaches. Herein, horizontal heterogeneity in VOC concentrations in the near-canopy atmosphere was examined by sampling from an unmanned aerial vehicle (UAV) flown horizontally several hundred meters over the plateau and slope forests in central Amazonia during the morning and early afternoon periods of the wet season of 2018. Unlike terpene concentrations, the isoprene concentrations in the near-canopy atmosphere over the plateau forest were 60% greater than those over the slope forest. A gradient transport model constrained by the data suggests that isoprene emissions differed by 220 to 330% from these forest subtypes, which is in contrast to a 0% difference implemented in most present-day biosphere emissions models (i.e., homogeneous emissions). Quantifying VOC concentrations, emissions, and other processes at intermediate horizontal scales is essential for understanding the ecological and Earth system roles of VOCs and representing them in climate and air quality models.


Assuntos
Atmosfera/química , Butadienos/análise , Florestas , Hemiterpenos/análise , Compostos Orgânicos Voláteis/análise , Brasil , Estações do Ano , Árvores/classificação , Árvores/fisiologia
5.
Environ Sci Technol ; 53(9): 4968-4976, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30924647

RESUMO

Organic particulate matter (PM) was produced at different particle surface area concentrations S in a continuously mixed flow reactor (CMFR). The apparent PM yield from the dark ozonolysis of α-pinene increased from 24.5 ± 0.7% to 57.1 ± 0.6% for an increase in S from 0.55 to 2.87 × 103 µm2·surface cm-3·volume. The apparent yield saturated for S > 2.1 × 103 µm2 cm-3. There was hysteresis in the apparent yield for experiments of increasing compared to decreasing S. The relative timescales of gas-particle interactions, gas-wall interactions, and thereby particle-wall cross interactions could explain the results. The PM carbon oxidation state and oxygen-to-carbon atomic ratio decreased from -0.19 to -0.47 and 0.62 to 0.51, respectively, for increasing S, suggesting that greater partitioning of semivolatile organic species into the PM contributed to the increased PM yield. A thorough understanding of the role of gas-wall interactions on apparent PM yield is essential for the extension of laboratory results into predictions of atmospheric PM production, and comparative results from CMFRs and batch reactors can be informative in this regard.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis , Oxirredução , Tamanho da Partícula , Fenômenos Físicos
6.
Environ Sci Technol ; 52(15): 8381-8389, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30004683

RESUMO

The uptake of medium-sized levoglucosan and 2,4-dinitrophenol to organic particles produced by α-pinene ozonolysis and to ammonium sulfate particles was studied from 10% to >95% relative humidity (RH). For aqueous sulfate particles, the water-normalized gas-particle partitioning coefficient of levoglucosan decreased from (1.0 ± 0.1) × 10-3 to (0.2 ± 0.1) × 10-3 (ng µg-1)particle/(ng m-3)gas from 40% to >95% RH, suggestive of a salting-in mechanism between levoglucosan and ionic ammonium sulfate solutions. For the organic particles, the levoglucosan partitioning coefficient increased from 10% to 40% RH and became invariant at (2.0 ± 0.4) × 10-3 (ng µg-1)/(ng m-3) above 40% RH. A kinetic limitation on uptake below 40% RH was implied, compared to a thermodynamic regime above 40% RH. The estimated diffusivity was 10-19±0.05 m2 s-1 at 40% RH. By comparison, the uptake of 2,4-dinitrophenol onto the organic particles was below detection limit, implying an upper limit on the partitioning coefficient of 6.8 × 10-6 (ng µg-1)/(ng m-3) at 80% RH. The results highlight that the molecular uptake of gases onto particles can be regulated by both kinetic and thermodynamic factors, either of which can limit the uptake of medium-sized organic molecules by atmospherically relevant particles.


Assuntos
Gases , Água , Aerossóis , Sulfato de Amônio
7.
Sci Adv ; 4(4): eaar2547, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29651460

RESUMO

Nitrogen oxides (NO x ) emitted from human activities are believed to regulate the atmospheric oxidation capacity of the troposphere. However, observational evidence is limited for the low-to-median NO x concentrations prevalent outside of polluted regions. Directly measuring oxidation capacity, represented primarily by hydroxyl radicals (OH), is challenging, and the span in NO x concentrations at a single observation site is often not wide. Concentrations of isoprene and its photo-oxidation products were used to infer the equivalent noontime OH concentrations. The fetch at an observation site in central Amazonia experienced varied contributions from background regional air, urban pollution, and biomass burning. The afternoon concentrations of reactive nitrogen oxides (NO y ), indicative of NO x exposure during the preceding few hours, spanned from 0.3 to 3.5 parts per billion. Accompanying the increase of NO y concentration, the inferred equivalent noontime OH concentrations increased by at least 250% from 0.6 × 106 to 1.6 × 106 cm-3. The conclusion is that, compared to background conditions of low NO x concentrations over the Amazon forest, pollution increased NO x concentrations and amplified OH concentrations, indicating the susceptibility of the atmospheric oxidation capacity over the forest to anthropogenic influence and reinforcing the important role of NO x in sustaining OH concentrations.

8.
Atmos Chem Phys ; 18(14): 10433-10457, 2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-33354203

RESUMO

Biogenic volatile organic compounds (BVOCs) from the Amazon forest region represent the largest source of organic carbon emissions to the atmosphere globally. These BVOC emissions dominantly consist of volatile and intermediate-volatility terpenoid compounds that undergo chemical transformations in the atmosphere to form oxygenated condensable gases and secondary organic aerosol (SOA). We collected quartz filter samples with 12 h time resolution and performed hourly in situ measurements with a semi-volatile thermal desorption aerosol gas chromatograph (SV-TAG) at a rural site ("T3") located to the west of the urban center of Manaus, Brazil as part of the Green Ocean Amazon (GoAmazon2014/5) field campaign to measure intermediate-volatility and semi-volatile BVOCs and their oxidation products during the wet and dry seasons. We speciated and quantified 30 sesquiterpenes and 4 diterpenes with mean concentrations in the range 0.01-6.04 ngm-3 (1-670ppqv). We estimate that sesquiterpenes contribute approximately 14 and 12% to the total reactive loss of O3 via reaction with isoprene or terpenes during the wet and dry seasons, respectively. This is reduced from ~ 50-70 % for within-canopy reactive O3 loss attributed to the ozonolysis of highly reactive sesquiterpenes (e.g., ß-caryophyllene) that are reacted away before reaching our measurement site. We further identify a suite of their oxidation products in the gas and particle phases and explore their role in biogenic SOA formation in the central Amazon region. Synthesized authentic standards were also used to quantify gas- and particle-phase oxidation products derived from ß-caryophyllene. Using tracer-based scaling methods for these products, we roughly estimate that sesquiterpene oxidation contributes at least 0.4-5 % (median 1 %) of total submicron OA mass. However, this is likely a low-end estimate, as evidence for additional unaccounted sesquiterpenes and their oxidation products clearly exists. By comparing our field data to laboratory-based sesquiterpene oxidation experiments we confirm that more than 40 additional observed compounds produced through sesquiterpene oxidation are present in Amazonian SOA, warranting further efforts towards more complete quantification.

9.
J Geophys Res Atmos ; 123(18): 10620-10636, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30997298

RESUMO

During the 2013 Southern Oxidant and Aerosol Study, Fourier Transform Infrared Spectroscopy (FTIR) and Aerosol Mass Spectrometer (AMS) measurements of submicron mass were collected at Look Rock (LRK), Tennessee, and Centreville (CTR), Alabama. Carbon monoxide and submicron sulfate and organic mass concentrations were 15-60% higher at CTR than at LRK but their time series had moderate correlations (r~0.5). However, NOx had no correlation (r=0.08) between the two sites with nighttime-to-early-morning peaks 3~10 times higher at CTR than at LRK. Organic mass (OM) sources identified by FTIR Positive Matrix Factorization (PMF) had three very similar factors at both sites: Fossil Fuel Combustion (FFC) related organic aerosols, Mixed Organic Aerosols (MOA), and Biogenic Organic Aerosols (BOA). The BOA spectrum from FTIR is similar (cosine similarity > 0.6) to that of lab-generated particle mass from the photochemical oxidation of both isoprene and monoterpenes under high NOx conditions from chamber experiments. The BOA mass fraction was highest during the night at CTR but in the afternoon at LRK. AMS PMF resulted in two similar pairs of factors at both sites and a third nighttime NOx-related factor (33% of OM) at CTR but a daytime nitrate-related factor (28% of OM) at LRK. NOx was correlated with BOA and LO-OOA for NOx concentrations higher than 1 ppb at both sites, producing 0.5 ± 0.1 µg m-3 for CTR-LO-OOA and 1.0 ± 0.3 µg m-3 for CTR-BOA above 1 ppb additional biogenic OM for each 1 ppb increase of NOx.

10.
Proc Natl Acad Sci U S A ; 113(22): 6125-30, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27185928

RESUMO

Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO2) to dominantly produce hydroxyhydroperoxides (ISOPOOH). They can also react with nitric oxide (NO) to largely produce methyl vinyl ketone (MVK) and methacrolein (MACR). Unimolecular isomerization and bimolecular reactions with organic peroxy radicals are also possible. There is uncertainty about the relative importance of each of these pathways in the atmosphere and possible changes because of anthropogenic pollution. Herein, measurements of ISOPOOH and MVK + MACR concentrations are reported over the central region of the Amazon basin during the wet season. The research site, downwind of an urban region, intercepted both background and polluted air masses during the GoAmazon2014/5 Experiment. Under background conditions, the confidence interval for the ratio of the ISOPOOH concentration to that of MVK + MACR spanned 0.4-0.6. This result implies a ratio of the reaction rate of ISOPOO with HO2 to that with NO of approximately unity. A value of unity is significantly smaller than simulated at present by global chemical transport models for this important, nominally low-NO, forested region of Earth. Under polluted conditions, when the concentrations of reactive nitrogen compounds were high (>1 ppb), ISOPOOH concentrations dropped below the instrumental detection limit (<60 ppt). This abrupt shift in isoprene photooxidation, sparked by human activities, speaks to ongoing and possible future changes in the photochemistry active over the Amazon rainforest.


Assuntos
Poluentes Atmosféricos/análise , Butadienos/química , Radicais Livres/análise , Hemiterpenos/química , Óxido Nítrico/química , Pentanos/química , Fotoquímica , Floresta Úmida , Acroleína/análogos & derivados , Acroleína/análise , Atmosfera , Butadienos/efeitos da radiação , Butanonas/análise , Hemiterpenos/efeitos da radiação , Humanos , Oxirredução , Pentanos/efeitos da radiação , Peróxidos/química
11.
Phys Chem Chem Phys ; 18(3): 1595-600, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26675580

RESUMO

Gaseous species produced via the HO2 reaction pathways of isoprene photo-oxidation were reacted with liquid, partially neutralized sulfate aerosol particles at 293 ± 1 K and <5% relative humidity. Isoprene-derived epoxydiols (IEPOX) were taken up for all neutralizations so long as the liquid phase was maintained. By comparison, isoprene-derived hydroperoxides (ISOPOOH) were taken up only for low neutralization (i.e., high acidity). The release of product molecules to the gas phase increased for low neutralization, corresponding to the release of at least 60 product molecules for the uptake of 100 reactant molecules at the lowest neutralization. A major reaction pathway was hydroperoxide cleavage in the particle phase to produce volatile products. Product species larger than the C5 chain of isoprene were also released to the gas phase, implying that some accretion products in the particle phase were sufficiently volatile to partition to the gas phase. The study results show that the dependence of reactive uptake on neutralization varies by species. Furthermore, in addition to functionalization and accretion, decomposition and re-volatilization should be considered in mass balance formulations of reactive uptake by atmospheric particles.

12.
Phys Chem Chem Phys ; 17(8): 5670-8, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25623937

RESUMO

The production of secondary organic material (SOM) by the reactive uptake of isoprene photooxidation products was investigated using partially to wholly neutralized sulfuric acid particles. The experiments were performed at a relative humidity (RH) of <5% and a temperature of 20 °C. The extent X of neutralization was adjusted from that of sulfuric acid (X = 0) to that of ammonium sulfate (X = 1). Significant SOM production was observed only for X < 0.7. The threshold of 0.7 corresponded to the transition point of the sulfate particles from aqueous to solid for <5% RH. The phase transition of inorganic sulfate therefore regulated the particle-phase reactions that produce isoprene SOM, at least for the investigated conditions. For aqueous particles, a decreasing extent of neutralization was associated with increasing production of SOM, including increased production of oligomers and organosulfates. These results can underpin treatments of phase-dependent SOM production within chemical transport models, thereby improving the accuracy of simulations of biogenic-anthropogenic interactions in the atmosphere and the associated impacts of aerosol particles on climate and air quality.


Assuntos
Butadienos/química , Hemiterpenos/química , Pentanos/química , Sulfatos/química , Sulfato de Amônio/química , Isomerismo , Luz , Oxirredução , Transição de Fase , Ácidos Sulfúricos/química
13.
Environ Sci Technol ; 49(1): 250-8, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25375412

RESUMO

The oxidation of isoprene is a globally significant source of secondary organic material (SOM) of atmospheric particles. The relative importance of different parallel pathways, however, remains inadequately understood and quantified. SOM production from isoprene photooxidation was studied under hydroperoxyl-dominant conditions for <5% relative humidity and at 20 °C in the presence of highly acidic to completely neutralized sulfate particles. Isoprene photooxidation was separated from SOM production by using two continuously mixed flow reactors connected in series and operated at steady state. Two online mass spectrometers separately sampled the gas and particle phases in the reactor outflow. The loss of specific gas-phase species as contributors to the production of SOM was thereby quantified. The produced SOM mass concentration was directly proportional to the loss of isoprene epoxydiol (IEPOX) isomers from the gas phase. IEPOX isomers lost from the gas phase accounted for (46 ± 11)% of the produced SOM mass concentration. The IEPOX isomers comprised (59 ± 21)% (molecular count) of the loss of monitored gas-phase species. The implication is that for the investigated reaction conditions the SOM production pathways tied to IEPOX isomers accounted for half of the SOM mass concentration.


Assuntos
Aerossóis/química , Álcoois/química , Butadienos/química , Hemiterpenos/química , Pentanos/química , Atmosfera , Umidade , Isomerismo , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Oxirredução , Processos Fotoquímicos , Sulfatos/química
14.
Anal Chem ; 78(19): 6726-32, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17007490

RESUMO

A new method for the detection of gas-phase hydroperoxides is described. The clustering chemistry of CF3O- is exploited to produce speciated measurements of several hydroperoxides with high sensitivity and fast time response. Correspondence of airborne observations made with this technique and the established HPLC method is illustrated. CF3O- appears to be a highly versatile reagent ion for measurements of both weak and strong acids in the atmosphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...